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Supplementary Methods Section. 
 
Power to detect the transmission of nullichiasmatic chromosomes.  
Our goal was to evaluate whether, when nullichiasmatic bivalents occur, their rate of 
proper disjunction is significantly greater than 0. For the larger chromosomes, we 
suspected that we would have little ability to answer this question, because the 
recombination rate is high enough that there is almost always a chiasma. To assess our 
power to detect the proper segregation of nullichiasmatic bivalents using the Hutterite 
data (see Methods in main text), we ran simulations for the different chromosomes. To 
this end, we considered two models: (i) A null model in which there is an obligate 
crossover per bivalent and the distribution of crossovers is otherwise specified by a 
Poisson distribution, with parameter the expected recombination rate of that 
chromosome (i.e., the “truncated Poisson model” [1]). (ii) An alternative model in 
which nullichiasmatic chromosomes are allowed and their frequency is specified by the 
same Poisson distribution. Both models assume that there is no crossover interference; 
model (ii) assumes that all nullichiasmatic chromosomes segregate properly. The first 
assumption is incorrect, but may nonetheless be a reasonable first approximation for 
the expected number of nullichiasmatic chromosomes. The second assumption leads to 
the best-case scenario for detecting the successful transmission of nullichiasmatic 
bivalents. 
 
To generate “observed counts” for each chromosome, we used binomial sampling to 
draw from the underlying distribution of chiasmata under the alternative model (the 
use of binomial sampling mimics the sampling of recombinant chromatids). We then 
ran our likelihood method on the simulated data and assessed how often (out of 100 
simulations) we obtained a significant likelihood ratio test at the 5% level (by the same 
procedure as on the actual data). We did so separately for males and females, as the 
two sexes are known to differ in many aspects of meiosis, including in their genetic 
map length and possibly in the stringency of meiotic checkpoints [2,3]. 
 
Chr Males Females 
1 0.02 0.02 
2 0.01 0 
3 0.04 0.02 
4 0.17 0.04 
5 0.17 0.01 
6 0.23 0.02 
7 0.24 0.02 
8 0.32 0.03 
9 0.3 0 
10 0.29 0.01 
11 0.3 0.07 
12 0.38 0.02 
13 0.52 0.13 
14 0.72 0.23 
15 0.58 0.2 
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16 0.7 0.12 
17 0.72 0.12 
18 0.85 0.13 
19 0.93 0.56 
20 0.8 0.34 
21 1 1 
22 1 1 
 
As can be seen, we only have substantial power (where substantial is arbitrarily 
defined as greater than 0.67) for chromosomes 21 and 22 in females, and the 8 smallest 
chromosomes in males. (We have power for more chromosomes in males, because the 
mean recombination rate per chromosome is lower than in females.) Thus, only for this 
small subset of chromosomes can we assess the stringency of the rule assuring at least 
one chiasma for proper disjunction. 
 
The robustness of our results for chromosome arms.   
 
As shown in Supplementary Table 2, we have excellent marker coverage of each 
chromosomal arm, in both physical and genetic distance. Given the small proportion of 
crossover events that we could be missing, our estimates of the fraction of 
nullichiasmatic arms that segregate properly should be highly reliable.  
 
As a further check, we reran our crossover-calling algorithm [4] requiring only two 
consecutive informative markers in order to call a crossover (i.e., K=2 rather than 5). 
Our previous analyses [4], notably the high concordance of our genetic map with that 
of Kong et al. (2002) [5] when setting K=5 [4], suggested that a threshold of K=2 
likely leads to the inclusion of spurious crossover events that could incorrectly 
decrease our count of non-recombinant gametes. However, setting a less stringent 
threshold may decrease the false negative rate as well. In any case, the qualitative 
conclusion remained the same: nullichiasmatic chromosome arms frequently 
experience proper disjunction.  
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In addition, we examined whether incomplete marker coverage could be contributing 
to our findings by testing whether the mean number of crossovers identified in a family 
was associated with the distance from the centromere to the second or fifth to last 
informative marker (given that we used K=2 and 5 to call crossover events). Without 
correcting for multiple tests, results significant at the 5% level (by a Spearman rank 
correlation test) were 4p (p=0.004) and 19p (p=0.029) for the fifth to last informative 
in males. In females, they were 22q (p=0.027) for the fifth to last informative marker. 
We also tested for an association between the fraction of nullichiasmatic chromosomes 
in a family and the distance from the centromere to the second or fifth to last 
informative marker. Without correction for multiple tests, significant results at the 5% 
level (by a Spearman rank correlation test) for the fifth to last informative marker 
were 2p (p=0.033) and 10p (p=0.041) in males and 7q (p=0.005), 8q (p=0.024) and 16q 
(p=0.023) in females. Thus, there is little or no correspondence between the low p-
values and chromosomes for which we found significant fractions of nullichiasmatic 
transmissions.  
 
Robustness of our results for chromosomes.  
The estimated fractions of nullichiasmatic chromosomes that experience proper 
disjunction are small and hence may be more sensitive to missing relatively few 
crossovers. Given the high density of markers in our data, we are highly unlikely to be 
missing double crossovers that might appear as non-recombinant gametes. However, 
we could be missing recombination events in the telomeres, past our last informative 
marker. Below we review the relevant properties of our data sets for the three 
chromosomes with significant evidence for nullichiasmatic transmissions when we 
assume complete marker coverage: chr. 12 and 18 in males and chr. 21 in females.  
 
Chromosome 12 in males.  
Across families, the median distance between the second informative marker on the p 
arm and the second to last informative marker on the q arm is 99.6% of the genetic 
length of the chromosome (based on Kong et al. (2002) [5]) and 99.6% of its physical 
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length, with all families lacking informative markers for 0.2-1.8cM. Given that we 
estimated that >0.1% of transmissions involved a nullichiasmatic chromosomes (our 
lowest 5%-tile), even the modest gap in our marker coverage renders the results highly 
tentative. 
 
Chromosome 18 in males. 
Across families, the median distance between the second informative marker on the p 
arm and the second to last informative marker on the q arm is 98.6% of the genetic 
length of the chromosome (based on Kong et al. (2002) [5]) and 99.4% of its physical 
length, with families lacking informative coverage for 0.9-2.6cM. If we assumed that 
all families lack marker coverage for 1.38 cM of the chromosome and that, 
conservatively, all the crossovers occurring in the missing region led to apparent non-
recombinant gametes (i.e., that 0.0138x288 meioses should be moved from the 0 count 
bin to the 1 count bin), we still found a model without the transmission of 
nullichiasmatic chromosomes to be unlikely (p=0.036, based on 5000 permutations). 
However, given that there is incomplete marker coverage for the telomeric regions, 
where males experience high levels of recombination [2], the evidence for successful 
transmission of nullichiasmatic chromosomes 18 remains somewhat tentative. 
 
Chromosome 21 in females. 
We used two sets of data for female transmissions of chromosome 21: 288 meioses 
from a Hutterite pedigree data, that we had previously analyzed in Coop et al. (2008) 
[4] and 152 meioses from CEPH (European-American) pedigrees in which crossovers 
were called by Oliver et al. (2008) [6]. The two data sets differ in their marker 
coverage, with 6,624 single nucleotide polymorphisms (SNPs) genotyped in the 
Hutterite and 133 SNPs in the CEPH data, and we therefore discuss them separately.  
 
Chromosome 21 is acrocentric, and all but ~280 kb of the short (p) arm is 
heterochromatic. Our data contain only four informative markers in the 280 kb, in part 
because the region is highly repetitive. We do not call any crossovers in it, whether K = 
2 or 5. (In turn, the Oliver et al. data contain no markers on the p-arm.) The UCSC 
genome browser (http://genome.ucsc.edu/) provides a recombination rate of ~0.3 
cM/Mb for this region (based on Ref. [5]), but the microsatellite markers on which 
that estimate relies appear to map to the long (q) arm (results not shown). Finally, a 
cytogenetic study of human female oocytes reported no chiasmata on the short arm of 
chromosome 21 in 60 bivalents with a single MLH1 focus, and one case of the 23 
bivalents with two or more MLH1 foci, but even then the position of the centromere 
was uncertain [3]. Taken together, these lines of evidence indicate that we are highly 
unlikely to be over-estimating the number of non-recombinant gametes because of lack 
of coverage of the p arm. 
 
Based on the Oliver et al. [6] data alone, the maximum likelihood estimate for 21q is 
19.8% (lower 5%-tile: 6.7%, p= 0.0070). The span of all 133 markers does not include 
4.4% of the genetic distance of 21q (based on Ref. [5]) and 5.6% of the physical 
distance. We estimate > 6.7% of transmissions involved a nullichiasmatic chromosome, 
which is still higher than 4.4% of the genetic distance missing on this chromosome.  
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Using the Hutterite data alone yields 12.5% as our estimate of the fraction of 
nullichiasmatic bivalents that segregated properly (lower 5%-tile: 2.8%, p= 0.0180). 
The median distance across families between the centromere and the second to last 
informative marker on the q arm is 100% of the genetic length of the chromosome 
(based on Kong et al. (2002) [5]), with families lacking informative markers for 0-
2.1cM (except for one family with 4 offspring that lacks markers for 10cM). The 
median marker span in physical distance, in turn, is 97.8% of the arm. This represents 
excellent coverage, especially given the relatively low rate of female crossing-over in 
telomeric regions [2,3]. 
 
As an additional check on the Hutterite data, we reran our crossover-calling algorithm 
on chromosome 21 with K=2 instead of K=5 and examined each additional crossover 
that was inferred. Crossover events that are flanked on both sides by five informative 
markers in the family, but that are only supported by two of the five, are likely to be 
spurious [4]; we therefore discarded them. However, we retained all cases in which 
there were fewer than five informative markers between the putative crossover and the 
telomere (or the centromere), since we could not exclude the possibility that those are 
real events that we missed because of insufficient marker density towards the telomere 
(or centromere) when setting K=5.  Including the additional events picked up for K=2, 
there are 135 cases of a non-recombinant chromosome 21 gamete, 126 cases of a 
gamete with one crossover and 27 gametes with two or more (instead of 138, 123 and 
27 respectively, for K=5); the probability of the data under the null model with no 
nullichiasmatic transmissions becomes 0.046 (based on 5000 permutations).  
 
Finally, to evaluate the robustness of our results for the two data sets jointly, we 
considered that all Oliver et al. families lack marker coverage for 4.4cM, and made the 
following, highly conservative assumptions: (i) That all Hutterite families are missing 
2.1cM in coverage (when the median is actually 0 cM) and that four offspring are 
missing 10cM (iii) That all crossovers occurring in the missing regions led to apparent 
non-recombinant gametes. We then moved a total of 13 meioses (i.e., 0.044x152 + 
0.021x284 + 0.4) from the 0 crossover bin to the 1 crossover bin. Having done so, we 
still found a model without the transmission of nullichiasmatic chromosomes to be 
unlikely (p=0.026, based on 5000 permutations). Thus, incomplete marker coverage 
cannot explain our findings for chromosome 21. 
 
Characterizing crossover interference. 
Following Broman and Weber (2000) [1], we estimated the parameter ν from our data, 
for each sex and each chromosome separately (Supplementary Figure 3). The value of 
ν estimated from the Hutterite data is similar to that obtained by Ref. [1], but with 
tighter confidence intervals due to the larger number of meioses available in the 
Hutterites.  
 
Variation between chromosomes in the level of interference.  
A likelihood ratio test (LRT) statistic comparing a model where the ν interference 
parameter is the same for all chromosomes to a model where each chromosome has a 
separate ν parameter. The LRT statistic = 2 ln(Likehood Ratio). The likelihoods for 
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the LRT test were calculated for the Hutterite genetic maps [4]. The 5% significance 
cutoff for a sex-specific LRT is 32.7.  
 
 Males Females 
Hutterite map 166.5 124.1 
 
Variation between the sexes in the level of interference.  
A likelihood ratio test (LRT) statistic comparing a model where the sexes share the 
same ν parameter for a chromosome compared to a model where each sex has a 
separate ν parameter. The LRT statistic = 2 ln(Likehood Ratio). The 5% significance 
cutoff for chromosome specific LRT is 9.3, after Bonferroni correction for 22 tests. 
The likelihoods for the LRT test were calculated using the Kong et al. (2002) [5] and 
Hutterite genetic maps. Chromosomes for which there is a significant LRT at the 5% 
level are marked with an *. 
 
Chr Hutterite map 
1 0.2 
2 * 42  
3 6.0 
4 1.8 
5 0.0 
6 2.1 
7 0.6 
8 0.0 
9 2.0 
10 0.0 
11  * 11.7 
12 1.3 
13  * 14.4 
14 0.0 
15 3.3 
16 7.5 
17 0.7 
18 1.0 
19  * 21.2 
20 0.1 
21 * 32.0 
22 0.6 
Total 148.9 
 
As seen in these two tables, we find some evidence for variation between chromosomes 
and sexes in the strength of interference (i.e., variation in ν). However, given the lack 
of fit of the gamma model (main text Figure 4), these findings should be interpreted 
with caution. 
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Vetting double crossovers in close proximity.  
To create a list of double crossovers in close proximity, we searched across 
transmissions for two events that occurred within 5 cM. The inter-crossover distances 
were calculated by linearly interpolating the Kong et al. (2002) [5] genetic map 
distances between the midpoints of the crossover intervals. A concern might be that 
this linear interpolation procedure introduces substantial error. To evaluate this 
possibility, we recalculated the distances between events using a genetic map estimated 
from linkage disequilibrium (LD) data instead of pedigree data [7]. The LD map is 
based on all meioses in the history of the sample, so has much greater spatial 
resolution; on the other hand, it is sex-averaged, making the direct comparison a bit 
difficult. Nonetheless, results are largely unchanged (not shown). Even using the Kong 
et al. (2002) distances between markers on either side of our crossover intervals (i.e., 
using no interpolation, at the cost of systematically over-estimating the true distance) 
yields an excess of close double crossovers (results not shown). 
We also created a more stringently vetted list of double crossovers (see Supplementary 
Figure 4) by focusing only on events supported by all offspring in the nuclear family 
and by at least 15 or more high quality markers (i.e., excluding any marker in the 
bottom 5%-tile of the QC scores provided by the BLRMM genotype calling 
algorithm); see Supplementary Materials in Coop et al. (2008) [4] for details. Where 
available, we checked the grandparental genotypes to make sure that they were 
consistent with our haplotype reconstruction in the parents. We note that requiring 15 
or more markers per crossover limits how closely spaced double crossovers can be in 
our data and in that respect, leads to an under-estimate of their proximity. In addition, 
we verified that there were no known segmental duplications and inversions in these 
regions (in the Segmental Duplications DB http://humanparalogy.gs.washington.edu/ 
and Database of Genomic Variants http://projects.tcag.ca/variation/). In 11 
individuals, we observed a triple crossover within 5 cM, a pattern consistent with a 
crossover in an inversion homozygote [8]; five of these coincided with the location of a 
known polymorphic inversion [8,9]. The 11 cases were excluded from our stringent 
list. To assess the possibility of de novo deletions, in all cases where the double 
crossovers was within 5 Mb, we verified that the raw genotype intensities (kindly 
provided by D. Conrad) did not show a marked decrease in the region. No such cases 
were found. Finally, we excluded two cases of double crossovers that spanned the 
centromere. 
  
A two pathway model for crossover interference 
To further investigate the double crossovers in surprisingly close proximity, we 
implemented the two-pathway model of [10]. Under this model, a fraction (p) of 
recombination events is not subject to crossover interference, while the rest 
experiences interference according to the gamma model with strength parameter ν. In 
the tables below, we present estimates of the male and female parameter (p and ν) 
obtained for each chromosome, the estimate ν0 where p is constrained to be zero, and 
the log-likelihood ratio comparing the model with p allowed to vary (p>0) to the null 
model with p=0. To evaluate the significance of the likelihood ratio for each 
chromosome, we conducted 1000 simulations under the null model p=0, given the 
genetic map length and v0 estimate for each chromosome. From these simulations, we 
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constructed a p-value from the number of simulations with a likelihood ratio greater 
than that observed for the chromosome (see [10]). 
 
Estimates under two pathway model of interference and significance test.  
 
Males 
Chr. ν p ν0 ln LR testing p=0 p-value 

1 9.96 0.10 3.84 15.08 0 
2 12.46 0.13 2.04 44.87 0 
3 6.79 0.03 5.05 2.78 0.006 
4 9.39 0.05 5.15 8.11 0 
5 7.16 0.03 4.90 4.53 0 
6 10.80 0.06 4.46 14.77 0 
7 9.83 0.06 4.44 14.98 0 
8 13.33 0.14 2.21 30.90 0 
9 10.50 0.12 2.96 13.57 0 

10 9.37 0.06 4.73 7.34 0 
11 10.82 0.03 7.15 3.99 0.003 
12 9.35 0.05 3.54 20.85 0 
13 11.65 0.10 3.48 13.52 0 
14 6.75 0.03 4.17 6.83 0 
15 9.42 0.02 6.62 4.19 0 
16 6.83 0.03 4.91 1.51 0.019 
17 4.76 0.06 3.31 1.85 0.013 
18 4.53 0.00 4.53 0.00 1 
19 4.55 0.08 2.88 1.50 0.024 
20 6.47 0.07 3.88 2.44 0.007 
21 Infinity 0.03 289.98 7.03 0.011 
22 16.85 0.06 4.45 8.28 0.001 

Total 9.17 0.08 3.70 260.48  
 
Females 
Chr. ν p ν0 ln LR testing p=0 p-value 

1 5.91 0.06 3.53 15.02 0 
2 6.98 0.04 4.69 5.83 0.001 
3 6.04 0.05 3.50 15.25 0 
4 5.77 0.04 4.16 5.68 0 
5 5.91 0.02 5.04 1.96 0.01 
6 6.63 0.07 3.52 12.33 0 
7 7.92 0.07 3.93 13.08 0 
8 7.79 0.18 2.21 16.68 0 
9 9.41 0.10 3.73 10.66 0 

10 9.32 0.06 4.72 13.94 0 
11 5.01 0.03 3.69 5.61 0.001 
12 8.65 0.07 4.29 7.09 0 
13 9.26 0.03 7.34 0.94 0.026 
14 7.58 0.03 4.24 15.57 0 
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15 6.83 0.03 4.52 7.26 0.001 
16 6.96 0.12 2.81 10.27 0 
17 7.74 0.07 3.88 9.56 0 
18 6.95 0.02 5.61 0.83 0.032 
19 8.42 0.00 8.42 0.00 1 
20 7.30 0.10 3.66 3.26 0.004 
21 9.89 0.09 2.82 5.38 0 
22 9.53 0.10 3.59 2.04 0.011 

Total 6.96 0.06 3.83 198.50  
 
 
Modeling the effects of chromatid interference. 
In our analysis, we assumed that when multiple chiasmata occur on a bivalent, the 
pairs of chromatids involved in each chiasma are chosen at random and independently. 
Departures from this assumption are referred to as chromatid interference. In the most 
extreme case of positive chromatid interference, all chiasmata could form between the 
same pair of chromatids, leading the number of crossovers, Y, in a randomly chosen 
gamete to equal the number of chiasmata in the tetrad, X, or zero, with equal 
probability. More generally, chromatid interference can increase the variance in the 
number of crossovers in a gamete (Y) given the number of chiasmata in the tetrad (X) 
relative to the no interference model. 
 
A simple, non-mechanistic model that exhibits this basic feature of chromatid 
interference is provided by the beta-binomial distribution, which can describe the 
number of crossovers, Y, in a gamete given X chiasmata in the bivalent: 

 Pr Y = y | X = x( ) =
x

y

!

"#
$

%&
' y +1 k , x ( y +1 k( )

' 1 k ,1 k( )
, (S1) 

where B() is the beta function. (Cf. Equation 1 of the main text.) The parameter k 
controls the variance in the number of crossovers given the number of chiasmata and 
can thus be viewed as controlling the degree of chromatid interference; k = 0 
corresponds to the case of no interference. For the results obtained using this 
approach, see Supplementary Figure 5. 
 
To infer the parameter k in the maximum likelihood setting, we adapted the EM 
algorithm of Ott (1996) [11] as follows. Writing Yi for the observed number of 
crossovers in gamete i (i = 1…N), and Xi for the unobserved number of chiasmata in 
the underlying tetrad, the log-likelihood for the complete data (observed and 
unobserved) is 
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Therefore the E step of the EM algorithm [12] can be written 
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where p(m) and k(m) are the parameter values from the previous iteration and 
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where ny is the number of gametes with y crossovers observed. Then in the M-step, 

  p
x
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is solved numerically. Starting from arbitrary p and k, the algorithm is iterated using 
Equation S5 until convergence to the desired precision. 
 
Testing for transmission distortion of genotypes on chromosome 21.  
 
To examine the possibility that certain genotypes are preferentially transmitted on 
chromosome 21 in females, we performed transmission distortion tests (tdt) to assess 
the deviation from Mendelian segregation in the transmissions from heterozygote 
mothers, using the Hutterite data. To this end, we used the parent of origin flag  "--tdt 
--poo" in PLINK [13] to calculate the asymptotic p-values for the tdt test, treating all 
children as affected.  
 
Quantile plot of the p-values from a test of maternal transmission distortion for all 
SNPs on chromosome 21. 
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(The point in the top right is a SNP that had an exceptionally high rate of genotyping 
error.) 
 
As can be seen, the p-values closely follow a uniform distribution, suggesting that there 
is no strong evidence of transmission distortion. Moreover, there is no enrichment of 
significant p-values close to the telomere or centromere of chromosome 21 (regions of 
the genome that are though to be particularly susceptible to meiotic drive); for 
example, ~5% of the 100 first and last markers on the chromosome have a p-value 
<0.05. 
 
A Bayesian approach to assess the support for proper disjunction of nullichiasmatic bivalents. 
We devised an MCMC scheme to explore the posterior distribution of parameters and 
models in a Bayesian setting; for the results, see Supplementary Figure 1.  
 
To that end, we considered the following models: 

Model m = 0 No chromatid interference (k = 0) 
Nullichiasmatic bivalents are allowed (p0 ≥ 0) 

Model m = 1 No chromatid interference (k = 0) 
Nullichiasmatic bivalents are assumed inviable (p0 = 0) 

Model m = 2 Chromatid interference (k ≥ 0) 
Nullichiasmatic bivalents are assumed inviable (p0 = 0) 
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We did not fit a model that allowed for both nullichiasmatic bivalents and chromatid 
interference because we considered these as competing explanations for an excess of 
gametes with zero crossovers. 
 
The object of inference was the posterior distribution of model (m) and parameters 
(p, k), which can be factorized as follows: 
  f p,k,m |Y( )! Pr Y | p,k,m( ) f p,k | m( )Pr m( ) , (S6) 

where Pr Y | p,k,m( )  is the likelihood of the observed data Y 
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f p,k | m( )  is the prior distribution, which is 
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when assuming an exponential prior with rate µ = 10 for the chromatid interference 
parameter, and Pr m( )  is the prior model probability (which we set uniform across 
models).  
 
When applying MCMC to proportion parameters such as p, which is constrained to 
sum to one, the chain is susceptible to numerical rounding errors that can cause failure 
of the algorithm. To overcome this problem, we used an equivalent reparameterization 
of p based on the following relationship between the Dirichlet distribution and the 
gamma distribution: if ϕx, x = 0…xmax are independent gamma random variables with 
shape parameters αx and scale parameter 1, and 

  p
x
= !

x
! "x"x =0

x
max

# , (S9) 

then the vector p has the Dirichlet distribution with parameter vector α. Therefore we 
assumed that, a priori, the ϕx’s follows an independent gamma distribution with 
parameters (αx, 1). For Models 1 and 2, we imposed the constraint that p0 = 0 
regardless of the value of ϕ0, which allows ϕ0 to follow its prior gamma distribution 
when m = 1 or 2. 

  f !,k | m( ) = µ e"µk
! x

# x "1 e
"!x

$ # x( )x=0

xmax

%  (S10) 
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where Γ(α) is the gamma function. The likelihood is calculated by performing the 
transformation given by Equation S19.  
 
Three types of Metropolis-Hastings move were implemented: a Log-normal proposal 
in which one of the ϕx’s, or k, was perturbed by a random amount, a switching 
proposal in which the values were switched between a pair of the ϕx’s, and a model 
switching move. 
 
Log-normal move. For example, an update to !"

x
 from !

x
 is proposed: Let 

!"
x
~ LogNormal "

x
,#"( ) . This move is accepted with probability 

  ! " x # $" x( ) = min 1,
Pr Y | $p ,k,m( )
Pr Y | p,k,m( )

f $" x ,k | m( )
f " x ,k | m( )

$" x

" x

%
&
'

('

)
*
'

+'
. (S11) 

Here σϕ is a parameter that controls the variance of the proposal move, and can be 
tuned to improve mixing of the MCMC. An analogous move is also used to update k. 
 
Switching move. For example, it is proposed to switch !

x
 with ! y . Let !" x

= "
y  and 

!" y
= "

x . This move is accepted with probability 

  ! " # $"( ) = min 1,
Pr Y | $p ,k,m( )
Pr Y | p,k,m( )

f $" ,k | m( )
f ",k | m( )

%
&
'

(
)
*

. (S12) 

Model switching move. The model is switched from m to m′ where m′ is chosen uniformly 
at random from the models other than m. The acceptance probability is 

  ! m" #m( ) = min 1,
Pr Y | p,k, #m( )
Pr Y | p,k,m( )

f $,k | #m( )
f $,k | m( )

Pr #m( )
Pr m( )

%
&
'

(
)
*

. (S13) 

 
In practice, when the MCMC moves to a model with fewer parameters, for example 
from Model 2 to 1, in which case parameter k is lost, updates to k are still proposed 
and k follows its prior distribution. Under Models 0 and 1, k has no effect on the 
likelihood and therefore the correct posterior distributions are obtained. 
 
Model comparison using Bayes factors 
To compare the relative likelihood of each pair of models, which is equivalent to the 
posterior odds since Pr m( ) = 1

3 , we calculated Bayes factors by averaging over the 
parameters p and (where appropriate) k. For example, the Bayes factor for Model 2 
versus Model 1 was calculated as the ratio of marginal likelihoods, 

  B1,2 =
P Y | m = 2( )
P Y | m = 1( )

=
Pr(Y | p,k,m = 2) f (p,k | m = 2)dpdk!!
Pr(Y | p,k,m = 1) f (p,k | m = 1)dpdk!!

. (S14) 

In practice, this quantity was computed simply as the relative number of iterations of 
the MCMC for which m = 2 versus m = 1. When B1,2 > 1 that suggests the data are 
better supported by Model 2 than Model 1, and vice versa when B1,2 < 1. One benefit of 
using Bayes factors rather than maximum likelihood ratios is that non-nested models 
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can be compared. Bayes factors are, however, sensitive to the choice of prior, and for 
this reason we analyzed the sensitivity of the Bayes factors to our choice. 
 
A maternal age effect on recombination patterns? Maternal age is known to be an important 
risk factor for non-disjunction and accordingly, the recombination patterns underlying 
trisomy change with maternal age [6]. We were interested in examining whether 
recombination patterns underlying proper disjunction might also show an age effect. 
We therefore focused on transmissions in mothers older than 35 at birth vs. younger 
than 35 (maternal ages at birth were kindly provided to us for the Oliver et al. data [6] 
by Tiffany R. Oliver). As can be seen below, the estimated fraction of nullichiasmatic 
chromosomes does not differ significantly between groups. 

 
Similarly, the median distance from the centromere to the first crossover did not differ 
significantly between the two groups (correcting for multiple tests, all p-values > 0.05; 
results not shown). However, this could simply reflect lack of power, given that we 
only have data about 41 transmissions in older mothers (72 for chromosome 21). 
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 Supplementary Table 1 
 
 chr X0 X1 X2 X3 X4 X5 X6 X7 X8 Span+ 
females 1 3 27 74 67 54 40 20 2 1 3 
 2 13 32 70 68 62 30 9 3 1 1 
 3 12 53 80 73 49 20 1 0 0 0 
 4 15 55 83 74 44 10 7 0 0 3 
 5 13 60 93 75 37 8 2 0 0 4 
 6 12 64 81 86 36 7 2 0 0 0 
 7 18 79 78 78 28 5 2 0 0 2 
 8 15 85 97 56 24 7 4 0 0 1 
 9 31 70 99 68 12 8 0 0 0 12 
 10 18 67 99 77 21 5 1 0 0 1 
 11 27 97 92 57 11 3 1 0 0 1 
 12 26 76 99 59 22 6 0 0 0 2 
 13 37 122 97 30 2 0 0 0 0 0 
 14 43 114 108 21 2 0 0 0 0 0 
 15 57 108 82 38 3 0 0 0 0 0 
 16 44 92 102 43 7 0 0 0 0 1 
 17 42 91 123 27 4 1 0 0 0 2 
 18 44 116 91 31 5 1 0 0 0 2 
 19 80 126 72 10 0 0 0 0 0 4 
 20 58 117 90 22 1 0 0 0 0 0 
 21 138 123 24 3 0 0 0 0 0 0 
** 21 79 60 12 1 0 0 0 0 0 0 
 22 117 144 23 4 0 0 0 0 0 0 
males 1 23 78 95 64 27 1 0 0 0 1 
 2 20 83 103 61 16 5 0 0 0 1 
 3 31 86 117 45 8 1 0 0 0 0 
 4 33 119 103 32 1 0 0 0 0 0 
 5 44 116 88 38 2 0 0 0 0 1 
 6 41 123 94 29 1 0 0 0 0 0 
 7 44 114 96 32 2 0 0 0 0 0 
 8 56 127 82 19 4 0 0 0 0 0 
 9 52 138 73 23 2 0 0 0 0 0 
 10 47 134 83 23 1 0 0 0 0 0 
 11 51 136 86 15 0 0 0 0 0 0 
 12 60 96 103 28 1 0 0 0 0 0 
 13 53 147 82 5 1 0 0 0 0 0 
 14 76 145 64 3 0 0 0 0 0 0 
 15 69 143 73 3 0 0 0 0 0 0 
 16 87 131 65 5 0 0 0 0 0 1 
 17 80 140 64 4 0 0 0 0 0 0 
 18 101 123 62 2 0 0 0 0 0 0 
 19 100 143 41 4 0 0 0 0 0 0 
 20 80 147 59 2 0 0 0 0 0 0 
 21 134 154 0 0 0 0 0 0 0 0 
 22 121 150 17 0 0 0 0 0 0 0 
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For each chromosome or chromosome arm, the observed number of transmissions with 
a given number of crossovers (where Xi denotes the number with i crossovers).  
** Data from Oliver et al. (2008)[6] 
+ Span refers to the number of events localized within intervals that span the 
centomere gap boundary. We conservatively assigned such events to both arms when 
testing for a non-zero fraction of nullichiasmatic transmissions. 
 
 
 chr arm X0 X1 X2 X3 X4 X5 
females 1 p 30 100 89 51 16 2 
 2 p 57 121 83 25 2 0 
 3 p 63 115 87 21 2 0 
 4 p 104 153 26 5 0 0 
 5 p 130 131 27 0 0 0 
 6 p 82 144 53 8 1 0 
 7 p 82 139 61 6 0 0 
 8 p 112 139 26 7 4 0 
 9 p 112 132 42 1 1 0 
 10 p 113 142 33 0 0 0 
 11 p 123 136 27 2 0 0 
 12 p 134 136 18 0 0 0 
 16 p 115 143 29 1 0 0 
 17 p 138 142 8 0 0 0 
 18 p 169 113 6 0 0 0 
 19 p 168 114 6 0 0 0 
 20 p 129 146 13 0 0 0 
 1 q 38 116 92 38 3 1 
 2 q 42 88 89 57 9 3 
 3 q 59 118 78 32 1 0 
 4 q 39 86 97 51 14 1 
 5 q 30 98 102 46 10 2 
 6 q 47 125 80 32 4 0 
 7 q 63 131 75 16 3 0 
 8 q 49 135 78 21 4 1 
 9 q 61 124 85 17 1 0 
 10 q 47 111 103 22 4 1 
 11 q 71 132 66 18 1 0 
 12 q 50 114 90 31 3 0 
 13 q 37 122 97 30 2 0 
 14 q 43 114 108 21 2 0 
 15 q 57 108 82 38 3 0 
 16 q 99 130 57 2 0 0 
 17 q 81 138 62 7 0 0 
 18 q 77 135 72 2 2 0 
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 19 q 134 130 24 0 0 0 
 20 q 123 136 28 1 0 0 
 21 q 138 123 24 3 0 0 
** 21 q 79 60 12 1 0 0 
 22 q 117 144 23 4 0 0 
males 1 p 76 126 77 9 0 0 
 2 p 102 141 38 6 1 0 
 3 p 91 124 71 2 0 0 
 4 p 147 140 1 0 0 0 
 5 p 153 135 0 0 0 0 
 6 p 127 154 7 0 0 0 
 7 p 150 134 4 0 0 0 
 8 p 142 140 3 3 0 0 
 9 p 147 137 4 0 0 0 
 10 p 141 144 3 0 0 0 
 11 p 140 148 0 0 0 0 
 12 p 150 136 2 0 0 0 
 16 p 165 118 5 0 0 0 
 17 p 162 122 4 0 0 0 
 18 p 178 109 1 0 0 0 
 19 p 198 87 3 0 0 0 
 20 p 167 118 3 0 0 0 
 1 q 92 129 64 3 0 0 
 2 q 68 126 85 9 0 0 
 3 q 110 138 38 2 0 0 
 4 q 77 143 64 4 0 0 
 5 q 85 131 67 5 0 0 
 6 q 98 147 42 1 0 0 
 7 q 89 134 61 4 0 0 
 8 q 111 148 26 3 0 0 
 9 q 114 134 38 2 0 0 
 10 q 103 149 34 2 0 0 
 11 q 111 150 26 1 0 0 
 12 q 97 135 53 3 0 0 
 13 q 53 147 82 5 1 0 
 14 q 76 145 64 3 0 0 
 15 q 69 143 73 3 0 0 
 16 q 146 135 7 0 0 0 
 17 q 151 124 13 0 0 0 
 18 q 155 124 9 0 0 0 
 19 q 150 132 6 0 0 0 
 20 q 142 145 1 0 0 0 
 21 q 134 154 0 0 0 0 
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 22 q 121 150 17 0 0 0 
  
For each chromosome or chromosome arm, the observed number of transmissions with 
a given number of crossovers (where Xi denotes i crossovers).  
** Data from Oliver et al. (2008)[6] 
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Supplementary Table 2  
 
 
 Chr Arm Median  Total Median*  Median  Total  Median+ 
Male   (bps)  (bps) in % (cM) (cM)  in % 
 1 p 119650750 121236957 0.987 94.542 96.098 0.984 
 1 q 121382370 122045891 0.995 101.908 101.978 0.999 
 2 p 91489823 91689898 0.998 81.054 81.911 0.990 
 2 q 147507080 148328332 0.994 109.412 109.412 1.000 
 3 p 90507573 90587544 0.999 83.727 83.920 0.998 
 3 q 105314899 106018197 0.993 79.872 80.543 0.992 
 4 p 49247894 49354874 0.998 53.569 53.840 0.995 
 4 q 138534845 139056345 0.996 95.889 96.025 0.999 
 5 p 46103522.5 46441398 0.993 53.910 54.570 0.988 
 5 q 131075643 131416469 0.997 95.623 95.623 1.000 
 6 p 58770087 58938125 0.997 57.562 58.040 0.992 
 6 q 108704895 109037575 0.997 77.580 77.580 1.000 
 7 p 57869185 58058273 0.997 54.924 56.383 0.974 
 7 q 97448543 97569867 0.999 79.150 79.150 1.000 
 8 p 43728729 43958052 0.995 49.960 49.960 1.000 
 8 q 98999801 99316775 0.997 68.988 69.032 0.999 
 9 p 46914019 47107499 0.996 51.522 51.910 0.993 
 9 q 87995118 88321770 0.996 69.388 69.388 1.000 
 10 p 38900641 39244941 0.991 51.566 52.140 0.989 
 10 q 93533896 93788688 0.997 81.750 81.750 1.000 
 11 p 51228184 51450781 0.996 47.500 47.500 1.000 
 11 q 79819138 80001604 0.998 61.860 61.860 1.000 
 12 p 34621481 34747961 0.996 53.066 53.495 0.992 
 12 q 95976952 96306851 0.997 82.127 82.127 1.000 
 13 q 95477281 96274981 0.992 102.911 103.067 0.998 
 14 q 86752683 88298586 0.982 94.626 95.451 0.991 
 15 q 81187132 82078916 0.989 103.340 103.919 0.994 
 16 p 35001914 35143302 0.996 52.992 53.630 0.988 
 16 q 51611826 51883953 0.995 54.413 54.413 1.000 
 17 p 22113712 22187133 0.997 47.781 48.212 0.991 
 17 q 56215314 56487610 0.995 61.540 61.540 1.000 
 18 p 15137683 15400898 0.983 41.957 43.055 0.974 
 18 q 59162399 59352258 0.997 57.237 57.373 0.998 
 19 p 26623880 26923622 0.989 41.014 41.100 0.998 
 19 q 33667247 33888030 0.993 51.540 51.540 1.000 
 20 p 26106047 26267569 0.994 48.479 50.266 0.964 
 20 q 34306951 34402735 0.997 24.982 24.982 1.000 
 21 q 32890384 33684324 0.976 47.521 47.521 1.000 
 22 q 33865003 35224711 0.961 49.087 49.318 0.995 
Female 1 p 119673538 121236957 0.987 184.104 186.037 0.990 
 1 q 121371981 122045891 0.994 162.249 162.457 0.999 
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 2 p 91548435 91689898 0.998 142.326 142.588 0.998 
 2 q 147554680 148328332 0.995 184.179 184.179 1.000 
 3 p 90507573 90587544 0.999 136.060 136.230 0.999 
 3 q 105448421 106018197 0.995 141.304 141.338 1.000 
 4 p 49026024 49354874 0.993 78.987 78.987 1.000 
 4 q 138624323 139056345 0.997 179.420 179.420 1.000 
 5 p 46199680 46441398 0.995 80.000 80.000 1.000 
 5 q 131043621 131416469 0.997 179.983 179.983 1.000 
 6 p 58769542 58938125 0.997 102.363 102.363 1.000 
 6 q 108691687 109037575 0.997 138.604 138.604 1.000 
 7 p 57897426 58058273 0.997 99.690 99.730 1.000 
 7 q 97401348.5 97569867 0.998 129.792 129.792 1.000 
 8 p 43730720 43958052 0.995 72.233 72.233 1.000 
 8 q 99077926 99316775 0.998 139.290 139.290 1.000 
 9 p 46843392 47107499 0.994 70.799 70.882 0.999 
 9 q 87887729 88321770 0.995 121.056 121.056 1.000 
 10 p 38916389 39244941 0.992 74.728 75.500 0.990 
 10 q 93454511 93788688 0.996 144.980 144.980 1.000 
 11 p 51228184 51450781 0.996 80.401 80.401 1.000 
 11 q 79916880 80001604 0.999 115.090 115.090 1.000 
 12 p 34642588.5 34747961 0.997 57.882 57.882 1.000 
 12 q 95991703 96306851 0.997 148.264 148.264 1.000 
 13 q 95469246 96274981 0.992 155.880 155.880 1.000 
 14 q 86711951 88298586 0.982 141.876 142.360 0.997 
 15 q 81030706 82078916 0.987 154.859 154.873 1.000 
 16 p 34962092 35143302 0.995 60.076 60.541 0.992 
 16 q 51674815.5 51883953 0.996 89.852 89.852 1.000 
 17 p 22075911 22187133 0.995 53.183 53.184 1.000 
 17 q 56209614 56487610 0.995 106.935 106.935 1.000 
 18 p 15184414 15400898 0.986 38.945 38.979 0.999 
 18 q 59270463 59352258 0.999 101.063 101.063 1.000 
 19 p 26605534 26923622 0.988 54.705 54.705 1.000 
 19 q 33667373 33888030 0.993 70.180 70.180 1.000 
 20 p 26140714 26267569 0.995 59.380 59.380 1.000 
 20 q 34216507 34402735 0.995 61.896 61.896 1.000 
 21 q 32946532 33684324 0.978 76.903 76.903 1.000 

 21^ q 31801920 33684324 0.866 73.193 76.537 0.956 
 22 q 33779283 35224711 0.959 82.920 83.217 0.996 

 
For a chromosome, the span of marker coverage is measured as the distance between 
the second informative marker on the p arm to the second to last informative marker 
on the q arm (based on build May 2004 from the UCSC genome browser 
http://genome.ucsc.edu/). For a chromosome arm, the span of marker coverage is 
measured as the distance from the second to last informative marker to the endpoints 
of the centromere gap boundary, as defined in the UCSC genome browser. 
 
* The median span across Hutterite families (weighted by offspring number), as a 
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percent of the total physical length. 
+ The median span across Hutterite families (weighted by offspring number), as a 
percent of the total genetic length of the arm based on Kong et al. (2002)[5], the most 
precise genetic map available for humans. 
^ Oliver et al. (2008)[6] data. For this study, we report the total span of all markers. 
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 Supplementary Table 3  
 
A list of stringently vetted double crossovers observed in the Hutterites. Shown are 
labels for the nuclear family and individual, the physical locations of double crossovers 
and the physical and genetic distance between them (i.e., using the midpoints of the 
two intervals in which the crossovers are localized). See the Supplementary Methods 
for details of the vetting procedure. 
 

 Chr. Family Ind. 
Start  
Interval (bp) 

End  
Interval (bp) 

Distance  
(cM) 

 
Distance  
(Mb) 

Males 1 A 1 12197058 12352966   
 1 A 1 15063705 15239216 2.70 2.88 
 1 B 1 86712329 86740876   
 1 B 1 91838623 91931089 3.26 5.16 
 1 C 1 9401069 9571857   
 1 C 1 10551300 10767127 1.46 3.40 
 2 D 1 108240642 109381620   
 2 D 1 118734753 118745309 4.95 9.93 
 2 E 1 52232228 52422338   
 2 E 1 56004263 56078481 1.94 3.71 
 4 F 1 8233231 8305513   
 4 F 1 11872842 11899834 4.94 3.62 
 6 W 1 12332702 12403489   
 6 W 1 13814229 13863564 1.09 1.47 
 6 H 1 102581232 102813768   
 6 H 1 105864431 106081913 1.46 3.28 
 7 I 1 146859724 146862110   
 7 I 1 149530332 149623439 3.05 2.72 
 11 G 1 71861792 72673560   
 11 G 1 80689139 80889529 4.17 8.52 
 12 J 1 48563396 48621353   
 12 J 1 50312811 50337397 0.76 1.73 
 12 K 1 114016078 114074255   
 12 K 1 117409243 117479038 2.94 3.40 
 19 H 2 62191356 62437884   
 19 H 2 63170308 63172291 0.00 0.86 
Females 1 N 1 150149091 150662242   
 1 N 1 151557880 151880356 1.78 1.31 
 1 O 1 43096311 43155717   
 1 O 1 43951297 44179221 1.15 0.94 
 1 P 1 54453788 54474742   
 1 P 1 56511820 56531172 3.64 2.06 
 2 L 2 36929203 36960938   
 2 L 2 39513540 39743590 4.61 2.68 
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 2 Q 1 200426527 200446269   
 2 Q 1 203380849 204188811 3.56 3.35 
 3 O 1 62086514 62088317   
 3 O 1 64447283 64518944 4.48 2.40 
 6 R 1 20358892 21126634   
 6 R 1 22143561 22263420 3.02 1.46 
 7 O 2 155176229 155241348   
 7 O 2 158519631 158604512 1.90 3.35 
 8 W 2 6949821 8147895   
 8 W 2 8985925 9200944 2.14 4.45 
 10 W 3 125440482 125693013   
 10 W 3 126834513 127166639 4.83 1.43 
 11 X 1 98765668 99128324   
 11 X 1 100255370 101008705 2.30 1.69 
 12 Y 1 129653804 129669889   
 12 Y 1 132282738 132352440 1.51 2.66 
 14 Z 1 57611159 58278190   
 14 Z 1 60217834 60771253 2.12 2.55 
 16 W 1 79738937 79799603   
 16 W 1 80474139 80474600 2.73 0.71 
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Supplementary Figure 1 
 
A) For each chromosomal arm, the estimated fraction of bivalents that segregated 
properly without a chiasma, in male (blue) and female (red) transmissions. Shown are 
the modes of the estimated posterior distributions and the 95% credible intervals. The 
data for chromosome 21 combine two sets of pedigrees (see main text Methods). 
Results are for a prior distribution with J=1 (see main text Methods). 

 
 
 
B) For each chromosomal arm, the Bayes Factor in support of a model with 
nullichiasmatic chromosomes vs. a model with an obligate crossover, for males (blue) 
and females (red). See Supplementary Methods for details. 
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C) For each chromosome, the estimated fraction of bivalents that segregated properly 
without a chiasma, in male (blue) and female (red) transmissions. See the legend of 
Supplementary Figure 1A for additional details. 
 

 
 
D) For each chromosome, the Bayes Factor in support of a model with nullichiasmatic 
chromosomes vs. a model with an obligate crossover, for males (blue) and females 
(red). See the legend of Supplementary Figure 1B for additional details. 
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Supplementary Figure 2 
 
Sex-specific estimates of the parameter ν from the gamma model, for each 
chromosome. The intervals correspond to ± twice the estimated standard error. A 
horizontal line is plotted at the pooled estimate of ν obtained using the data from all 
autosomes.  
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Supplementary Figure 3 
 
Estimated correlation function of the distance from the centromere ρ(d) between 
recombination events on the p and q arms that both occur within distance d of the 
centromere. The dashed curves correspond to approximate 95% pointwise confidence 
limits. The figure was obtained for the Hutterite data, using all meiotic products that 
had at least one crossover on each arm, pooled across chromosomes, as in Figure 6 of 
Broman and Weber (2000)[1]. It shows a negative correlation between the positions of 
recombination events of either side of the centromere, indicating that there is 
interference across the centromere, i.e., that the centromere is not a barrier to 
interference. 
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Supplementary Figure 4 
 
Double crossovers in close proximity. The observed number of double crossovers 
within 5 cM or less versus the number expected under a gamma renewal model, the 
standard statistical model for crossover interference (see SOM). In red are events in 
female transmissions; in blue in male transmissions. 
 

 
 
 
Although the high confidence set was stringently vetted and likely represents an 
under-estimate of both the number of close double crossovers and their proximity (see 
Supplementary Methods), there is still an excess number within 5 cM compared to 
expectation. For example, even if we very conservatively ignored all the crossovers 
that we excluded because they did not meet one of our vetting criteria, finding so many 
double crossovers within 5 cM would be unexpected, given the estimated strength of 
interference (p=0.047 for females and p=0.110 for males, respectively).  
We also asked how close we would expect double crossovers to be, given that they 
occur within 5 cM. When we took the expected relationship shown in this Figure, and 
used it to simulate 15 events in females and 14 events in males, we found that the mean 
distance between double crossovers is shorter than expected (one-sided p=0.0039 for 
females and 0.0028 for males, based on 10,000 simulations).  
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Supplementary Figure 5  
 
For maternal transmissions of chromosome 21, we rejected a model with no 
nullichiasmatic tetrads and no chromatid interference (see Figure 2 and main text). To 
explore whether the data could be explained by chromatid interference alone, we 
considered a model that mimics its effects, under the assumption that there are no 
nullichiasmatic tetrads. Of central importance in the model is the parameter k, which 
controls the variance in the number of crossovers given the number of chiasmata and 
can thus be viewed as controlling the degree of chromatid interference; k = 0 
corresponds to the case of no chromatid interference. 
 
The first panel shows the inferred distribution of the number of chiasmata in tetrads 
under this model. Shown are the point estimates and the 95% confidence interval (see 
Supplementary Methods for details), for the maximum likelihood estimate k = 13.26.  

 
 
The second panel is the observed distribution of the number of crossovers in female 
transmissions of chromosome 21 (using our data and those of Ref. [6]), along with the 
95% prediction interval (as can be seen, the data fall well within).  
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The last panel shows the probability t of observing a recombinant gamete given a 
chiasma, the variance of which is determined by the parameter k. Under a model with 
no chromatid interference, this probability is always 0.5, leading to binomial sampling 
of recombinant chromatids (see Methods); to mimic chromatid interference, we 
assumed that t follows a symmetric beta distribution, leading to beta-binomial 
sampling. As can be seen, the estimated distribution of t (k = 13.26; shown in red) is 
extremely variable, suggesting that strong positive chromatid interference would be 
needed to generate the observed pattern. It is not known if chromatid interference 
occurs in humans, but none is observed in yeast [14]. 
 
 

 


